Academic unit: Faculty of Engineering and Informatics Applied Informatics Applied Informatics Level: Bachelor Course Status: Obligatory Year of studies: I Number of hours per week: 3 Value of Credits - ECTS: 5 Time / location: Course lecturer: Course lecturer: Prof.Ass. Dr.Bashkim Cerkini Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) <	Basic data of the subject				
Applied Informatics Title of the subject: Backelor Course Status: Obligatory Year of studies: I Number of hours per week: 3 Value of Credits - ECTS: 5 Time / location: Course Eaturer: Course lecturer: Prof.Ass. Dr.Bashkim Cerkini Course lecturer: Prof.Ass. Dr.Bashkim Cerkini Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Desi	Academic unit:	Faculty of E	Engineering a	and Informatics	
Title of the subject: Basics of Informatics Level: Bachelor Course Status: Obligatory Year of studies: I Number of hours per week: 3 Zourse lecturer: Prof.Ass. Dr.Bashkim Cerkini Course lecturer: Prof.Ass. Dr.Bashkim Cerkini Contact details: bashkim.cerkini@ushaf.net Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • <td></td> <td>Applied Inf</td> <td>ormatics</td> <td></td> <td></td>		Applied Inf	ormatics		
Level: Bachelor Course Status: Obligatory Year of studies: I Number of hours per week: 3 Value of Credits - ECTS: 5 Time / location: Course lecturer: Prof. Ass. Dr.Bashkim Cerkini Course lecturer: Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To express values in different system: Binary, Octal, Hexadecimal, etc. • To express values in different system: • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits.	Title of the subject:	Basics of In	formatics		
Course Status: Obligatory Year of studies: I Number of hours per week: 3 Value of Credits - ECTS: 5 Time / location: Prof.Ass. Dr.Bashkim Çerkini Course lecturer: Prof.Ass. Dr.Bashkim Çerkini Course Description: bashkim.cerkini@ushaf.net This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To express values in different system: Binary, Octal, Hexadecimal, etc. • To express values in different system: • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Activity Hour Day/Week In total Lectures with numerical exercises 3 15 <	Level:	Bachelor			
Year of studies: I Number of hours per week: 3 Value of Credits - ECTS: 5 Time / location: Course lecturer: Course lecturer: Prof.Ass. Dr.Bashkim Cerkini Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) 45 Activity Hour Day/Week In total Lectures with numerical exercises 3 15 45 Internship — — — —	Course Status:	Obligatory			
Number of hours per week: 3 Value of Credits - ECTS: 5 Time / location: Course lecturer: Prof.Ass. Dr.Bashkim Cerkini Contact details: bashkim.cerkini@ushaf.net Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Activity Hour Day/Week In total Lectures with numerical exercises 3 15 45 Internship — — — Contacts with teacher / consultations —	Year of studies:	Ι			
Value of Credits - ECTS: 5 Time / location: Prof.Ass. Dr.Bashkim Cerkini Course lecturer: Prof.Ass. Dr.Bashkim Cerkini Contact details: bashkim.cerkini@ushaf.net Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuits. • Designing the digital circuits. •	Number of hours per week:	3			
Time / location: Prof.Ass. Dr.Bashkim Cerkini Course lecturer: Prof.Ass. Dr.Bashkim Cerkini@ushaf.net Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. •	Value of Credits - ECTS:	5			
Course lecturer: Prof.Ass. Dr.Bashkim Çerkini Contact details: bashkim.cerkini@ushaf.net Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Activity Hour Day/Week Internship Contacts with numerical exercises 3 15 45 Internship Contacts with teacher / consultations 1 <td< td=""><td>Time / location:</td><td></td><td></td><td></td><td></td></td<>	Time / location:				
Contact details: bashkim.cerkini@ushaf.net Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: Contribution to the student load (which must correspond with learning outcomes) To express values in different system: Binary, Octal, Hexadecimal, etc. Contribution to the student load (which must correspond with learning outcomes) Activity Hour Day/Week In total logic circuits. Contacts with numerical exercises 3 15 45 45 45 Midtern, seminars and projects. 3 2 6 6 6 Field exercises 3 15 45 45 Midtern, seminars and projects. 3 2 6 6 Field exercises 3 15 45 45 Internship 2 6 6 6 6 Contacts with numerical exercises <t< td=""><td>Course lecturer:</td><td>Prof.Ass. D</td><td>r.Bashkim Ç</td><td>Cerkini</td><td></td></t<>	Course lecturer:	Prof.Ass. D	r.Bashkim Ç	Cerkini	
Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits.	Contact details:	bashkim.cerl	kini@ushaf.n	let	
Course Description: This course enables students to know, understand and apply the basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to its: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circu					
basic concepts of digital electronics. It provides candidates with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digit circuits. • Designing the digit circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Activity Hour Day/Week In total Lectures with numerical exercises 3 15 45 Internship Contacts with tacher / consultations Field exercises 3 2 6 Midterm, seminars and projects. 3 2 6 Homework Self-learning time student (at the library or aspent on evaluation (tests, quiz and final exam) 3 5	Course Description:	This course	enables stude	ents to know, unders	stand and apply the
with an opportunity to develop the knowledge and skills to be able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) 45 Activity Hour Day/Week In total Lectures with numerical exercises 3 15 45 Internship Self-learning time student (at the library or at home) 3 2 6 Homework Field exercises 3 15 45 Midterm, seminars and projects. 3 2 6 Hom	_	basic conce	pts of digita	l electronics. It pr	rovides candidates
able to design and construct logic circuits to meet a design brief. Objectives of the course: The purpose of the module is to present the way of digital logic design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Activity Hour Day/Week Internship Intotal Contacts with teacher / consultations 15 Field exercises 3 2 Midterm, seminars and projects. 3 2 Final preparation for the exam 7 2 14 Time spent on evaluation (tests, quiz and final exam) 15 15 Projects and presentations. 3 5 15		with an opp	ortunity to d	evelop the knowled	ge and skills to be
brief.Objectives of the course:The purpose of the module is to present the way of digital logic design (analysis and design).Expected learning outcomes:Upon successful completion of this course, student will be able to:• To express values in different system: Binary, Octal, Hexadecimal, etc.• To express values in different system: Binary, Octal, 		able to desi	gn and cons	struct logic circuits	to meet a design
Objectives of the course:The purpose of the module is to present the way of digital logic design (analysis and design).Expected learning outcomes:Upon successful completion of this course, student will be able to:Expected learning outcomes:Upon successful completion of this course, student will be able to:• To express values in different system: Binary, Octal, Hexadecimal, etc.Binary, Octal, Hexadecimal, etc.• To formulate different codes for information.• To formulate different codes for information.• Explain and find the functions that perform a digital logic circuit.• Analyse logic circuits.• Designing the digital circuits.• Designing the digital circuits.• To the student load (which must correspond with learning outcomes)Mathematical exercisesActivityHourDay/WeekIn totalLectures with numerical exercises31545InternshipInternshipIntotalContacts with teacher / consultations326Field exercises31545InternshipIntotalIntotalSelf-learning time student (at the library or tat home)31545Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)3515Projects and presentations.3515		brief.			
design (analysis and design). Expected learning outcomes: Upon successful completion of this course, student will be able to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Hour Day/Week In total Lectures with numerical exercises 3 15 45 Internship Contacts with teacher / consultations Field exercises 3 2 6 Midterm, seminars and projects. 3 2 6 Homework Self-learning time student (at the library or at thome) 3 15 45 Final preparation for the exam 7 2 14 Time spent on evaluation (tests, quiz and final exam)	Objectives of the course:	The purpose	of the modu	le is to present the v	way of digital logic
Expected learning outcomes:Upon successful completion of this course, student will be able to:• To express values in different system: Binary, Octal, Hexadecimal, etc.• To formulate different system: Binary, Octal, Hexadecimal, etc.• To formulate different codes for information.• Explain and find the functions that perform a digital logic circuit.• Analyse logic circuits.• Designing the digital circuits.• Designing the digital circuits.• Designing the digital circuits.• Contribution to the student load (which must correspond with learning outcomes)ActivityHourDay/WeekInternship•Contacts with teacher / consultations•Field exercises315Midterm, seminars and projects.32Self-learning time student (at the library or at home)315Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)Projects and presentations.3515		design (anal	ysis and desi	gn).	
to: • To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Hour Day/Week In total Lectures with numerical exercises 3 15 115 45 Internship — Contacts with teacher / consultations — Field exercises 3 2 Midterm, seminars and projects. 3 2 Self-learning time student (at the library or at home) 3 15 Final preparation for the exam 7 2 14 Time spent on evaluation (tests, quiz and final exam) — — — Projects and presentations. 3 5 15 45	Expected learning outcomes:	cted learning outcomes: Upon successful completion of this cou		ion of this course, s	tudent will be able
• To express values in different system: Binary, Octal, Hexadecimal, etc. • To formulate different codes for information. • Explain and find the functions that perform a digital logic circuit. • Analyse logic circuits. • Designing the digital circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Hour Day/Week In total Lectures with numerical exercises 3 11 15 45 Internship Contacts with teacher / consultations		to:		-	
Hexadecimal, etc.• To formulate different codes for information.• Explain and find the functions that perform a digital logic circuit.• Analyse logic circuits.• Designing the digital circuits.• Designing time student load (which must correspond with learning outcomes)• Designing time student (at the library or a service of a service of a service of the exam• Final preparation for the exam• Final preparation for the exam• Projects and presentations.• Option to the set of the exam• Designing the digital exam• Projects and presentations.• Designing the digital exam• Designing the digital exam• Designing the digital ex		• To e	xpress value	s in different syste	em: Binary, Octal,
 To formulate different codes for information. Explain and find the functions that perform a digital logic circuit. Analyse logic circuits. Designing the digital circuits. Contribution to the student load (which must correspond with learning outcomes) Activity Hour Day/Week In total Lectures with numerical exercises 3 15 45 Internship Contacts with teacher / consultations Field exercises 3 2 6 Midterm, seminars and projects. 3 15 45 Self-learning time student (at the library or at home) 3 15 45 Final preparation for the exam 7 2 14 Time spent on evaluation (tests, quiz and final exam) 3 5 15		Hexa	decimal, etc.		·
• Explain and find the functions that perform a digital logic circuit.• Analyse logic circuits. • Designing the digital circuits.• Contribution to the student load (which must correspond with learning outcomes)ActivityHourDay/WeekIn totalLectures with numerical exercises31545InternshipContacts with teacher / consultationsField exercises326Midterm, seminars and projects.326Homework </td <td></td> <td>• <i>To fo</i></td> <td>ormulate diffe</td> <td>rent codes for infor</td> <td>mation.</td>		• <i>To fo</i>	ormulate diffe	rent codes for infor	mation.
logic circuit.• Analyse logic circuits.• Designing the digital circuits.Contribution to the student load (which must correspond with learning outcomes)ActivityHourDay/WeekIn totalLectures with numerical exercises31545InternshipContacts with teacher / consultationsField exercisesMidterm, seminars and projects.326HomeworkSelf-learning time student (at the library or at home)Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)Projects and presentations.3515		Expla	ain and find	the functions that	perform a digital
• Analyse logic circuits. • Designing the digital circuits. • Contribution to the student load (which must correspond with learning outcomes) Activity Hour Day/Week In total Lectures with numerical exercises 3 15 45 Internship		logic	circuit.	J	F J M M G
Designing the digital circuits. Contribution to the student load (which must correspond with learning outcomes)ActivityHourDay/WeekIn totalLectures with numerical exercises31545Internship		Anal [*]	vse logic circ	uits.	
Debasing the argina coloradaContribution to the student load (which must correspond with learning outcomes)ActivityHourDay/WeekIn totalLectures with numerical exercises31545Internship		Desi	oning the dig	ital circuits	
Contribution to the student load (which must correspond with learning outcomes)ActivityHourDay/WeekIn totalLectures with numerical exercises31545Internship		2000	5		
ActivityHourDay/WeekIn totalLectures with numerical exercises31545Internship </td <td>Contribution to the stude</td> <td>nt load (whic</td> <td>h must corr</td> <td>espond with learning</td> <td>ng outcomes)</td>	Contribution to the stude	nt load (whic	h must corr	espond with learning	ng outcomes)
Lectures with numerical exercises31516Lectures with numerical exercises31545InternshipContacts with teacher / consultationsField exercisesMidterm, seminars and projects.326HomeworkSelf-learning time student (at the library or at home)31545Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)3515Projects and presentations.3515	Activity		Hour	Dav/Week	In total
InternshipImage: Second state of the state of	Lectures with numerical exercise	es	3	15	45
InternationInternationContacts with teacher / consultationsInternational constraintsField exercisesInternational constraintsMidterm, seminars and projects.3Midterm, seminars and projects.3HomeworkInternational constraintsSelf-learning time student (at the library or at home)15Final preparation for the exam7Final preparation for the exam7Time spent on evaluation (tests, quiz and final exam)15Projects and presentations.3Trace10	Internship				
Field exercisesImage: seminars and projects.326Midterm, seminars and projects.326HomeworkImage: seminars and projects.31545Self-learning time student (at the library or at home)154545Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)Image: seminars1515Projects and presentations.3515	Contacts with teacher / consultat	tions			
Midterm, seminars and projects.326HomeworkSelf-learning time student (at the library or at home)31545Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)Projects and presentations.3515	Field everyises				
Hinderin, seminars and projects.326HomeworkImage: Self-learning time student (at the library or at home)31545Self-learning time student (at the library or at home)7214Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)	Midterm seminars and projects		3	2	6
Self-learning time student (at the library or at home)31545Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)Projects and presentations.3515	Homework		5	2	0
at home)31343Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)	Self-learning time student (at the	a library or	3	15	15
at none)Image: constraint of the exam7214Final preparation for the exam7214Time spent on evaluation (tests, quiz and final exam)Image: constraint of the examImage: constraint of the examProjects and presentations.3515	at home)		5	15	45
Time spent on evaluation (tests, quiz and final exam)7214Projects and presentations.3515	a nome)		7	2	14
Final exam)Image: Second and the second a	Time spent on evaluation (tasts	auiz and	/	<u>ک</u>	14
Projects and presentations. 3 5 15	final exam)				
Trojecis and presentations. 3 J IJ	Projects and presentations		3	5	15
L'Intel 175	Total		5	5	13

Teaching methodology:	The course takes 15 weeks with 2 hours of lectures and 2 hour weekly individual and group exercises. Exercises will be held in the form of individual and group work in which concrete examples will be discussed. Active participation is extremely important so students are encouraged to attend lectures and exercises regularly and contribute to the discussions that take place in lectures. Lectures, exercise, individual work, discussions and group work.
Assessment methods:	Final exam: 70%; Course work: 30%
The ratio of theory and practice:	60% theory and exercises with 40% lab work.
Literature	
Basic Literature:	1. Agni Dika "Qarqet digjitale kombinuese I", Universiteti i Prishtinës, 2008
Additional Literature:	2. S.M. Deokar, A. A. Phadke, "Digital Logic Design and VHDL", Wiles, 2009
Designed learning plan	
Week:	Lectures and exercises to be held
Week one:	Presentation of the subject
Week two:	Numerical systems. The binary number system, arithmetic operations in the binary system. Transformations between systems
	bybients.
Week three:	Codes and encoding. Boolean algebra. Logical functions and their presentation.
Week three: Week four:	Codes and encoding. Boolean algebra. Logical functions and their presentation. Combinatorial logic circuits.
Week three: Week four: Week five:	Codes and encoding. Boolean algebra. Logical functions and their presentation. Combinatorial logic circuits. Analysis of logic circuits. Synthesis of logic circuits.
Week three: Week four: Week five: Week six:	Codes and encoding. Boolean algebra. Logical functions and their presentation. Combinatorial logic circuits. Analysis of logic circuits. Synthesis of logic circuits. Encoders, decoders, codes transducers.
Week three: Week four: Week five: Week six: Week seven:	Codes and encoding. Boolean algebra. Logical functions and their presentation. Combinatorial logic circuits. Analysis of logic circuits. Synthesis of logic circuits. Encoders, decoders, codes transducers. Test 1
Week three: Week four: Week five: Week six: Week seven: Week eight:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.
Week three: Week four: Week five: Week six: Week seven: Week eight: Week nine:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.Digital sequential circuits. Flip-Flops: SR, JK, D, T.
Week three: Week four: Week five: Week six: Week seven: Week eight: Week nine: Week ten:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.Digital sequential circuits. Flip-Flops: SR, JK, D, T.State Tables of the circuits. Diagram of states of the circuit.
Week three: Week four: Week five: Week six: Week seven: Week eight: Week nine: Week ten: Week ten:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.Digital sequential circuits. Flip-Flops: SR, JK, D, T.State Tables of the circuits. Diagram of states of the circuits.
Week three: Week four: Week five: Week six: Week seven: Week eight: Week nine: Week ten: Week ten: Week ten: Week twelve:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.Digital sequential circuits. Flip-Flops: SR, JK, D, T.State Tables of the circuits. Diagram of states of the circuit. Analysis of synchronous and asynchronous sequential circuits.Design of sequential circuits.
Week three: Week four: Week five: Week six: Week seven: Week eight: Week nine: Week ten: Week ten: Week twelve: Week twelve: Week thirteen:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.Digital sequential circuits. Flip-Flops: SR, JK, D, T.State Tables of the circuits. Diagram of states of the circuit.Analysis of synchronous and asynchronous sequential circuits.Design of digital counters.
Week three:Week four:Week five:Week six:Week seven:Week seven:Week eight:Week nine:Week ten:Week ten:Week ten:Week ten:Week thirteen:Week thirteen:Week fourteen:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.Digital sequential circuits. Flip-Flops: SR, JK, D, T.State Tables of the circuits. Diagram of states of the circuit.Analysis of synchronous and asynchronous sequential circuits.Design of digital counters.Design of memory. Software for simulating logic circuits.
Week three:Week four:Week five:Week six:Week seven:Week eight:Week eight:Week ten:Week ten:Week ten:Week ten:Week thirteen:Week thirteen:Week fourteen:Week fifteen:	Systems:Codes and encoding. Boolean algebra. Logical functions and their presentation.Combinatorial logic circuits.Analysis of logic circuits. Synthesis of logic circuits.Encoders, decoders, codes transducers.Test 1Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories.Digital sequential circuits. Flip-Flops: SR, JK, D, T.State Tables of the circuits. Diagram of states of the circuit.Analysis of synchronous and asynchronous sequential circuits.Design of digital counters.Design of digital counters.Test 2
Week three: Week four: Week five: Week six: Week seven: Week eight: Week eight: Week ten: Week ten: Week ten: Week ten: Week thirteen: Week thirteen: Week fourteen: Week fifteen: Academic policies and rules of	Codes and encoding. Boolean algebra. Logical functions and their presentation. Combinatorial logic circuits. Analysis of logic circuits. Synthesis of logic circuits. Encoders, decoders, codes transducers. Test 1 Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories. Digital sequential circuits. Flip-Flops: SR, JK, D, T. State Tables of the circuits. Diagram of states of the circuit. Analysis of synchronous and asynchronous sequential circuits. Design of sequential circuits. Design of digital counters. Design of memory. Software for simulating logic circuits. Test 2 Conduct
Week three:Week four:Week five:Week six:Week seven:Week eight:Week eight:Week ten:Week ten:Week ten:Week ten:Week thirteen:Week thirteen:Week fourteen:Week fifteen:Academic policies and rules ofRegular attendance of lectures	Codes and encoding. Boolean algebra. Logical functions and their presentation. Combinatorial logic circuits. Analysis of logic circuits. Synthesis of logic circuits. Encoders, decoders, codes transducers. Test 1 Multiplexers, de-multiplexers, arithmetic circuits, comparators, ROM memories. Digital sequential circuits. Flip-Flops: SR, JK, D, T. State Tables of the circuits. Diagram of states of the circuit. Analysis of synchronous and asynchronous sequential circuits. Design of sequential circuits. Design of digital counters. Design of memory. Software for simulating logic circuits. Test 2 Conduct and exercises is necessary, as well as active participation with

phones turned off or in silent mode